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Twenty-Fourth Power Residue Difference Sets 

By Ronald J. Evans* 

Abstract. It is proved that if p is a prime 1 (mod 24) such that either 2 is a cubic residue or 
3 is a quartic residue (mod p), then the twenty-fourth powers (mod p) do not form a 
difference set or a modified difference set. 

1. Introduction. Let p = ef + 1 be a prime with fixed primitive root g. Let H 
denote the set of (nonzero) eth power residues (mod p). For integers i, j (mod p), 
define the cyclotomic number (i, j) of order e to be the number of integers n 
(mod p) for which n/g' and (1 + n)/gJ are both in H. If there exists a ? 1 such 
that every nonzero integer (mod p) can be expressed as a difference (mod p) of 
elements of H (resp., H U {O}) in exactly a ways, one calls H a difference set (resp. 
modified difference set). 

B. Lehmer [7] has shown that 

( 1 ) H is a difference set if and only if 2 1 e, 2 j f, and 

(i, O) = (f f-1)/e for all i = 0, 1, 2, . .., (e e-2)/2, 

and 

( 1') H is a modified difference set if and only if 2 1 e, 21 f, and 

1 + (0,0) = (i,0) = (f+ 1)/e for alli = 1,2,...,(e - 2)/2. 

In Section 5 of this paper, we use Lehmer's result, a table of cyclotomic numbers 
of order twenty-four [6], and a formula for Gauss sums of order twenty-four [3, 
Theorem 3.32] to prove the following theorem. 

THEOREM. Suppose that p = 24f + 1 is a prime such that either 2 is a cubic residue 
or 3 is a quartic residue (mod p). Then the twenty-fourth powers (mod p) do not form a 
difference set or a modified difference set. 

2. History. Chowla [4] and Lehmer [7] have constructed eth power residue 
difference sets and modified difference sets in the cases e = 2,4, 8. The eth power 
residue difference sets and modified difference sets have been proved nonexistent for 
all other values of e s 24, except in the following unsolved cases: 

(A) e 20, p=21 (mod40), 5 nonquartic (mod p), 
(B) e 22, p 23 (mod 88), 2 not an eleventh power (mod p), 
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and 

(C) e = 24, p 25 (mod 48), 2 noncubic and 3 nonquartic (mod p). 

See [7] for e = 6; [13], [14] for e = 10, 12; [9, Theorems 4 and 5] for e = 14, 22; [12], 
[5] for e = 16; [2] for e = 18; and [10] for e = 20. See also the paper of Berndt and 
Evans [3, ?5] and the books of Baumert [1], Mann [8], and Storer [11]. 

3. The Tables of Cyclotomic Numbers of Order Twenty-Four. In the sequel we use 
the notation of Section 1 with e = 24. Let D = exp(27Ti/24) and fix a character X 
(mod p) of order twenty-four such that X(g) =. For characters X, T (mod p), 
define the Jacobi sums 

J(X, ') = , X(n)T(l - n), K(X) = X(4)J(X, X). 
n (mod p) 

It is known [3, ?3] that there exist integers X, Y, A, B, C, D, U, V such that 

K(X6) = -X + 2Yi (p =X2 + 4y2, X 1 (mod4)), 

K(4) -A + Bi3 (p =A2 + 3B2,A 1 (mod6)), 

K(X3) = -C + Di2 (p C2 + 2D2, C-1 (mod4)), 

and 

K(x) = U+ 2Vi/6 (p U2 + 24V2, U_ -C(mod 3)). 

Since J(X, x2) E Z[t], there exist integers Do, D._... , D7 such that 
7 

J(X, X2 ) = DiD 
.=o 

In the 48 tables [6], each number 576(i, j) has been expressed as a linear combina- 
tionofp, 1,X, Y,A,B, C,D, U, V,D0,...,D7 overZ. 

4. Gauss Sums of Order Twenty-Four. Consider the Gauss sum 

p-I 

Ge= : exp(2 7rine/p). 
n=O 

Define, for real y, 

(2) Fe( y) = I Ge + 7 12- (p(e e- 1)+ 2 ) . 

It is known [3, p. 391] that, for e = 24, 

(3) H is a difference set (resp., modified difference set) if and only if 

F24(-1) = 0 (resp., F24(23) = 0). 

5. Proof of Theorem. By (1) and (1'), we may assume that f is odd. Define 
V' E {0,1} by V' _ V (mod2). Let Z = ind2 (mod 12) and T= ind3 (mod8), 
where the indices are taken with respect to the primitive root g (mod p). We may 
assume without loss of generality that Z E {0, 2,4, 6} and T E {0, 2, 4} (otherwise 
replace g by an appropriate power of g such as g-1, g5, or g7). 

Assume that H is a difference set or a modified difference set. In particular, then, 
by (1) and (1'), the numbers 

a(i) = 576(i,0) 
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are equal for 1 < i < 11. We will produce a contradiction in each of the nine cases 
below. The last case is considerably more complicated than the others since it 
incorporates the results on Gauss sums from Section 4 and [3, Theorem 3.32]. 

Case 1. V' = Z= 0. 
From Tables 25-27 in [6], 

0 = a(l) + a(5)-a(7)- a(ll) = 192Y, if T O, 

0 a(1) + a(7)-a(5)-a(11) = 48B, if T= 2, 

and 

O = a(IO))- a(2) = 48B, if T = 4. 

Since clearly Y and B are nonzero, this is a contradiction. 
Case 2. V' = 0, Z 2. 
From Tables 28 and 30, 

0 = a(ll)-a(5) = 96Y, if T O, 

and 

0 a(5) + a(9) + a(l)-a(3)- a(7)-a(l1) = 288Y, if T 4. 

(Note that T # 2 in this case, since 3 is quartic by hypothesis.) 
Case 3. V' =, Z 4. 
From Tables 31 and 33, 

0 = a(l)-a(7) = 96Y, if T = O, 

and 

0 = a(3) + a(7) + a(l1)-a(l)-a(5)-a(9) = 192Y, if T 4. 

Case 4. V' = 0, Z = 6. 
From Tables 34-36, 

0 = a(3)-a(9) = 96Y, if T = O, 

0 a(l) + a(8)-a(4)-(a(5) = 48B, if T 2, 

and 

0 a(2) + a(8)-a(4)-a(10) = 96B, if T = 4. 

Case 5. V' = 1, Z = 2. 
From Tables 40 and 42, 

0 = a(l)-a(7) = 96Y, if T O, 

and 

0 a(l) + ?a(5) + a(9)-a(3)-(a(7)- a(l l) = 96Y, if T = 4. 

Case 6. V' = 1, Z = 6. 
From Tables 46-48, 

0 = a(l)-a(5) = 48B, if T = O, 
0 a(l) + a(7) - a(5) - a(1) = 48B, if T= 2, 

and 

0 = a(4)-Ia(8) = 48B, if T = 4. 
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Case 7. V'= 1, Z = 4. 
First suppose that T = 4. Then from Table 45, 14(a(4) + a(8)) + 5a(O) = 33p - 

879 - 306A. By (1) or (1'), the left side above equals 33p - 825 or 33p - 2121, 
respectively. This yields a contradiction in either case. 

Finally, suppose that T 0 O. Then from Table 43, 0 = 2a(7) + 2a(5) + a(2) + 
5a(8) - 5a(4) - a(10) - 4a(3) = 288A + 72B, so B = -4A and p = A2 + 3B2 = 

49A2, which is absurd. 
Case 8. V' = L, Z = 0, T# 0. 
From Tables 38 and 39, 

0 = a(2) + a(7) - a(10) - a(l1) = 144B, if T = 2, 

and 

0 = a(2) + a(8) - a(4) - a(10) = 96B, if T = 4. 

Case 9. V' = 1, Z = 0, T = 0. 
Assume for the moment that H is a difference set rather than a modified 

difference set. Then by (1), 

(4) p - 25 = a(O) = a(l) = a(3). 

From Table 37, 

(5) 0 = a(l) - a(5) = 48B + 48D4, 

(6) 0 = a(O) - a(6) = 16A + 8C - 24, 

and 

(7) 0 = a(2) - a(4) = -16A - 8C - 24U. 

By (12)-(14), we have 

(8) B = -D4 

and 

(9) U= -1. 

From (11), (13), (15), (16), and the formula for a(l) (in Table 37), we obtain 

(10) A= 13 

and 

(11) C=-23. 

From (1 1), (18), and the formula for a(3), 

(12) X= 5. 

From (1 1), (16), (17), (19), and the formula for a(0), 

(13) 2Do + D4= 16. 

Conversely, if equalities (8)-(13) hold, then H is a difference set; this follows easily 
from (1) and Table 37. We will see shortly that (8)-(13) cannot all hold. It is 
interesting to note, however, that (9)-(13) all hold for p 601. 

By arguing as above, we can show that H is a modified difference set if and only if 
the following equalities (8')-(13') all hold: 

(8') B = -D4 

(9') U= 23, 
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(10') A = -299, 

(11') C= 529, 

(12') X= -115, 

(13') 2Do + D4 = -368. 

Unfortunately we do not see how to obtain contradictions from (8)-(13) or 
(8')-(13') directly from the properties of the Jacobi sums in Section 3. Instead, we 
obtain contradictions using the results of Section 4 and [3, Theorem 3.32], via the 
following technical lemma. 

LEMMA. Suppose that F24(y) = 0. Then for some T = 1 and v = 1, 

(14) 16(U + a)(a - C)(p + Xa) = S2- 4Apqr, 

where 

'J = A/i, R = v(2p -2Xd )112, q = 2 + (-y -X)la + R(l + T)/U, 

r = 2U-A + y-2TXX+ R(1 + ) + 2a(2 + T) + (y -U)RT/a, 

and 

s = -4p + R(y - 2TA + C + 2U) - a(y + 2A + X+ 2C - 4U). 

Proof. For brevity, write G = G3. Define T as in [3, (3.37)]. By [3, Theorems 3.8 
and 3.20], there exists a value of v = + 1 (specifying R) such that 

(15) G12-G + G2/a-a+R+ T. 

In view of [3, Theorem 3.19], there exists a value of T = +1 such that 

(16) T= TGR/a, 

since 31 X by (12), (12'). Since f is odd by hypothesis, the expression W 
?(RI + R5 + R 7 + RI1) given in [3, p. 379] is purely imaginary. Thus, by (15), (16), 
and [3, Theorem 3.32], we have 

(17) G24 = G + G2/a - a + R + TGR/a ? i((2a - 2C)(2a -R))/ 

?i((2U + 2a)(4a + 2G + 2R -TGRI))1/2 

where the first five terms on the right of (17) are real and the last two terms are 
purely imaginary. By (2) and (17), we have, for real y, 

F24(y) =I G24 + y 12 -23p, 

so 

(18) F24(y) = -23p-y2 + (G + G2/a-a + R+ TGR/a + y)2 

+ (2a - 2C)(2a - R) + (2U + 2a)(4a + 2G + 2R - TRG/a) 

+4L, 

where 

(19) L2 = (U + a)(a - C)(2a - R)(4a + 2G + 2R - TRG/a). 

From [3, Theorem 3.6], since 2 is cubic (mod p), 

(20) G3= 3pG-2Ap. 
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Expanding the right side of (18) and then using (20) to express G3 and G4 in terms 
of smaller powers of G, we see that 

F24(y) 4L = -23p - y2 + G2 + (3G2 - 2AG) + p + (2p - 2Xa) 

+ (2G2 - 2G2X/Ca) + y2 + (6aG - 4Aa) - 2aG 

+2GR + 2TG2R/a + 2Gy - 2G2 + 2RG2/a 

+ (6TRG - 4TAR) + 2yG2/a - 2aR - 2TrRG 

-2ay + (4TaG - 4TXG) + 2yR + 2yTRG/a 

+4p - 4Ca - 2aR + 2CR + 8Ua + 4UG + 4UR 

-2TURG/a + 8p + 4aG + 4aR - 2TRG. 

Since F24(Y) - 0 by the hypothesis of the Lemma, it follows that 

(21) +42L = qG2+ rG + s. 

Squaring the right side of (21) and then using (20) to simplify as before, we find that 

(22) 4L2 = G2(r2 + 2qs + 3pq2) + G(6pqr + 2rs - 2Apq2) + (S2 - 4Apqr). 

Now, the degrees of G and R over Q are 3 and 4, respectively, and it is consequently 
easy to see that G has degree 3 over Q(R). From (19), we can express the left side of 
(22) as a linear polynomial in G over Q(R) with constant term 

16(U + a)(a - C)(p + Xa). 

Since the constant term on the right side of (22) is S2 - 4Apqr, the Lemma is 
proved. 

Assume that H is a difference set, so that (8)-(13) hold. Then by (3), Fo(- 1) 0, 
so by the Lemma, (14) holds with y -1. Thus, 

(23) 16( p2 + 27p3/2 + 87p- 115p1/2) = S2-52pqr, 

where q, r, s are given in the following table: 

T~ q r s 

-1 2 - 6/a 2a - 6 12a - 4p 

1 2-6/a + 2R/a -26 + 6a + 2R 12a-4 p-52R 

If T= -1, the right side of (23) equals 16(p2 - 19p3/2 + 87p- 117pl/2), which 
yields a contradiction. If T= 1, we can express the right side of (23) as a linear 
polynomial in R over Q(a) and then compare coefficients of R in (23) to obtain the 
contradiction 0 416(5p'/2 - p). 

Finally, assume that H is a modified difference set, so that (8')-(13') hold. Then 
by (3), F24(23) = 0, so by the Lemma, (14) holds with y - 23. Thus 

(23') 16(p2 - 621p3"2 + 46023p + 1399205p'/2) - S2 + 1196pqr, 

where q, r, s are given in the following table: 

T~ q r s 

-1 2 + 138/a 138 + a -4p - 276a 

1 2 + 138/a + 2R/a 598 + 6a + 2R -4p-276a + 1196R 
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If T = -1, the right side of (23') equals 16(p2 + 437p3/2 + 46023p + 1423539p1/2), 
which yields a contradiction. If TX 1, comparison of coefficients of R in (23') yields 
the contradiction 0 = 9568(p + 1 15p'/2). 
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