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Twenty-Fourth Power Residue Difference Sets
By Ronald J. Evans*

Abstract. It is proved that if p is a prime = 1 (mod 24) such that either 2 is a cubic residue or
3 is a quartic residue (mod p), then the twenty-fourth powers (mod p) do not form a
difference set or a modified difference set.

1. Introduction. Let p = ¢f + 1 be a prime with fixed primitive root g. Let H
denote the set of (nonzero) eth power residues (mod p). For integers 7, j (mod p),
define the cyclotomic number (i, j) of order e to be the number of integers n
(mod p) for which n/g’ and (1 + n)/g’ are both in H. If there exists a = 1 such
that every nonzero integer (mod p) can be expressed as a difference (mod p) of
elements of H (resp., H U {0}) in exactly a ways, one calls H a difference set (resp.
modified difference set).

E. Lehmer [7] has shown that

(1) H is a difference set if and only if 2| e, 2} f, and
(i,0)=(f—1)/eforalli=0,1,2,...,(e — 2)/2,
and

(1) H is a modified difference set if and only if 2 | e, 2} f, and
1+ (0,0) = (i,0) = (f+ 1)/eforalli=1,2,...,(e — 2)/2.

In Section 5 of this paper, we use Lehmer’s result, a table of cyclotomic numbers
of order twenty-four [6], and a formula for Gauss sums of order twenty-four [3,
Theorem 3.32] to prove the following theorem.

THEOREM. Suppose that p = 24f + 1 is a prime such that either 2 is a cubic residue
or 3 is a quartic residue (mod p). Then the twenty-fourth powers (mod p) do not form a
difference set or a modified difference set.

2. History. Chowla [4] and Lehmer [7] have constructed eth power residue
difference sets and modified difference sets in the cases e = 2,4, 8. The eth power
residue difference sets and modified difference sets have been proved nonexistent for
all other values of e < 24, except in the following unsolved cases:

(A) e =20, p=21(mod40), 5 nonquartic(mod p),
(B) e=22, p=23(mod88), 2notan eleventh power (mod p),
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and

(C) e=24, p=25(mod48), 2 noncubicand 3 nonquartic (mod p).

See [7] for e = 6; [13], [14] for e = 10, 12; [9, Theorems 4 and 5] for e = 14, 22; [12],
[5] for e = 16; [2] for e = 18; and [10] for e = 20. See also the paper of Berndt and
Evans [3, §5] and the books of Baumert [1], Mann [8], and Storer [11].

3. The Tables of Cyclotomic Numbers of Order Twenty-Four. In the sequel we use
the notation of Section 1 with e = 24. Let { = exp(27i/24) and fix a character x
(mod p) of order twenty-four such that x(g) = {. For characters A, ¥ (mod p),
define the Jacobi sums

JNE)= 3 An)¥(1—n), KA)=A4)J(AN).
n(mod p)

It is known [3, §3] that there exist integers X, Y, A, B, C, D, U, V such that
K(x®)=-X+2Yi (p=X*+4Y% X=1(mod4)),
K(x*)=-4+Bif3 (p=4>+3B>4=1(mod6)),
K(x})=-C+Di2 (p=C>+2D? C=1(mod4)),

and

K(x)=U+2if6 (p=U?+24V?, U= -C (mod3)).
Since J(x, x?) € Z[{], there exist integers Dy, D\,...,D such that
7
J(x.x*) = Z DL
1=0
In the 48 tables [6], each number 576(i, j) has been expressed as a linear combina-
tionofp, 1, X,Y,4,B,C,D, U, V, D,...,D, over Z.

4. Gauss Sums of Order Twenty-Four. Consider the Gauss sum

p—1

G,= Y exp(2min®/p).
n=0

Define, for real v,
(2) F(y) =G+ v = (ple—1) +v?).
It is known [3, p. 391] that, for e = 24,
(3) H is a difference set (resp., modified difference set) if and only if
Fou(~1) = 0 (resp., F,4(23) = 0).

5. Proof of Theorem. By (1) and (1’), we may assume that f is odd. Define
Ve {0,1} by V"=V (mod2). Let Z=ind2 (mod12) and T = ind 3 (mod 8),
where the indices are taken with respect to the primitive root g (mod p). We may
assume without loss of generality that Z € {0,2,4,6} and T € {0,2,4)} (otherwise
replace g by an appropriate power of g such as g~', g, or g”).

Assume that H is a difference set or a modified difference set. In particular, then,
by (1) and (1’), the numbers

a(i) = 576(i,0)
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are equal for 1 < i< 11. We will produce a contradiction in each of the nine cases
below. The last case is considerably more complicated than the others since it
incorporates the results on Gauss sums from Section 4 and [3, Theorem 3.32].

Casel. V' =2Z=0.

From Tables 25-27 in [6],

=a(l) + a(5) — a(7) — «(11) = 192Y, ifT=0,
0=a(l) +a(7) — a(5) —a(11) =48B, ifT =2,
and
= a(10) — a(2) = 48B, if T=4.

Since clearly Y and B are nonzero, this is a contradiction.
Case2. V' =0,Z =12.
From Tables 28 and 30,

0=a(ll) —a(5) =96Y, ifT=0,
and
0=a(5) + a(9) + a(1) — a(3) — a(7) — a(11) = 288Y, if T = 4.

(Note that T # 2 in this case, since 3 is quartic by hypothesis.)
Case3. V' =0,Z=4.
From Tables 31 and 33,

=a(l) — a(7) =96Y, ifT=0,
and
0=1a(3) + a(7) + a(11) — a(l) — a(5) — a(9) = 192Y, if T = 4.
Cased. V' =0,Z = 6.
From Tables 34-36,

0=a(3) — a(9) = %Y, if T=0,
0=a(l) + «(8) — a(d) — a(5) = 48B, ifT=2,
and
= a(2) + a(8) — a(4) — a(10) = 96B, if T = 4.

Case5. V' =1,Z=2.
From Tables 40 and 42,

0=a(l) — a«(7) =96Y, ifT=0,
and
0=1a(1) + a5) + a(9) — a(3) — a(7) — a(11) = 96Y, if T =4.

Case6. V' =1,Z = 6.
From Tables 4648,

0=a(l) — a5) = 48B, ifT=0,
0=a(1) + a(7) — a(5) — a(11) = 48B, if T =2,

and

0= a(4) — a(8) = 48B, if T = 4.
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Case1. V' =1,Z=4.

First suppose that T = 4. Then from Table 45, 14(a(4) + «(8)) + 5a(0) = 33p —
879 — 3064. By (1) or (1’), the left side above equals 33p — 825 or 33p — 2121,
respectively. This yields a contradiction in either case.

Finally, suppose that T = 0. Then from Table 43, 0 = 2a(7) + 2a(5) + a(2) +
5a(8) — Sa(4) — a(10) — 4a(3) = 2884 + 72B, s0 B = -44 and p = A> + 3B? =
4942, which is absurd.

Case8.V'=1,Z=0,T#0.

From Tables 38 and 39,

0=a2) + a(7) — a(10) — a(11) = 144B, f T =2,
and
0 =a(2) + a(8) — a(4) — a(10) = 96B, if T = 4.

Case9. V' =1,Z=0,T=0.
Assume for the moment that H is a difference set rather than a modified
difference set. Then by (1),

(4) p — 25 =a(0) = a(1) = a(3).
From Table 37,

(5) 0=a(l) — a(5) = 48B + 48D,,
(6) 0=a(0) — a(6) = 164 + 8C — 24,
and

(7) 0=a(2) — a(4) = -164 — 8C — 24U.
By (12)-(14), we have

(8) B=-D,

and

9) U=-1.

From (11), (13), (15), (16), and the formula for a(1) (in Table 37), we obtain
(10) A=13

and

(11) = -23.

From (11), (18), and the formula for a(3),

(12) X=5.

From (11), (16), (17), (19), and the formula for a(0),

(13) 2D, + D, = 16.

Conversely, if equalities (8)—(13) hold, then H is a difference set; this follows easily
from (1) and Table 37. We will see shortly that (8)-(13) cannot all hold. It is
interesting to note, however, that (9)—(13) all hold for p = 601.

By arguing as above, we can show that H is a modified difference set if and only if
the following equalities (8')-(13") all hold:
(8) B=-D,,
(9) U = 23,
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(10) A=-299,
(11) C = 529,

(12)) =115,
(13) 2D, + D, = -368.

Unfortunately we do not see how to obtain contradictions from (8)-(13) or
(8)—(13") directly from the properties of the Jacobi sums in Section 3. Instead, we
obtain contradictions using the results of Section 4 and [3, Theorem 3.32], via the
following technical lemma.

LEMMA. Suppose that F,,(v) = 0. Then for some v = *1 andv = =1,
(14) 16(U + 0)(0 — C)(p + Xo) = s* — 4A4pgr,
where
o=1yp, R=v»2p—2X0)"? gq=2+(y—X)/o+R(1+7)/o,
r=2U—A+vy—21X+R(1+7)+202+7)+(y— U)R7/0,
and
s=-4p+R(y—21A+C+2U)—o(y+24+ X+ 2C—4U).

Proof. For brevity, write G = G,. Define T as in [3, (3.37)]. By [3, Theorems 3.8
and 3.20], there exists a value of » = =1 (specifying R) such that

(15) G,=G+G*/s—oc+R+T.
In view of [3, Theorem 3.19], there exists a value of 7 = =1 such that
(16) T =GR /o,
since 31 X by (12), (12’). Since f is odd by hypothesis, the expression W =
*(R, + Ry + R; + R|)) given in [3, p. 379] is purely imaginary. Thus, by (15), (16),
and [3, Theorem 3.32], we have
(17)  Gu =G+ G*/o — o+ R+ 1GR/o = i((20 — 2C)(20 — R))"”
+i((2U + 20)(40 + 2G + 2R — 7GR /5)) ',

where the first five terms on the right of (17) are real and the last two terms are
purely imaginary. By (2) and (17), we have, for real v,

Fy(v) =| Gy + Y|2 —y*—23p,
SO
(18) Fy(v) =-23p —v*+ (G + G*/o — 6 + R+ 7GR /o + v)’

+ (20 —2C)(26 — R) + (2U + 20)(46 + 2G + 2R — TRG/0)
*4L,

where

(19) L*=(U+o0)(oc—C)(20— R)(40 +2G+ 2R — 1RG /o).

From [3, Theorem 3.6], since 2 is cubic (mod p),

(20) G*=3pG —24p.
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Expanding the right side of (18) and then using (20) to express G> and G* in terms
of smaller powers of G, we see that

Fuy(y) ¥F4L=-23p —y*+ G*+ (3G* —24G) + p + (2p — 2 Xo)
+ (2G* — 2G*X/0) + y* + (60G — 440) — 206G
+2GR + 27G*R /0 + 2Gy — 2G* + 2RG?* /o
+ (67RG — 47AR) + 2YG*/o — 206R — 27RG
—20y + (470G — 47XG) + 2YR + 2yTRG /o
+4p —4Co — 20R + 2CR + 8Uo + 4UG + 4UR
—27URG /o + 8p + 406G + 40R — 27RG.
Since F,(y) = 0 by the hypothesis of the Lemma, it follows that
(21) +2L = qG*+ rG + s.
Squaring the right side of (21) and then using (20) to simplify as before, we find that
(22) 4L* = G*(r>+2gs + 3pq?) + G(6pgr + 2rs — 24pq*) + (s> — 44pgr).
Now, the degrees of G and R over Q are 3 and 4, respectively, and it is consequently

easy to see that G has degree 3 over Q(R). From (19), we can express the left side of
(22) as a linear polynomial in G over Q(R) with constant term

16(U+ o)(6 — C)(p + Xo).
Since the constant term on the right side of (22) is s? — 44pgr, the Lemma is
proved.

Assume that H is a difference set, so that (8)—(13) hold. Then by (3), F,4(-1) = 0,
so by the Lemma, (14) holds with y = —1. Thus,

(23) 16( p? + 27p3/% + 87p — 115p'/2) = 5% — 52 pgr,
where ¢, r, s are given in the following table:
T q r §
-1 2—6/a 20 — 6 126 — 4p
1 2—6/6 +2R/0 -26 + 60 + 2R 126 —4p — 52R

If 7= -1, the right side of (23) equals 16( p> — 19p3/2 + 87p — 117p'/?), which
yields a contradiction. If 7 = 1, we can express the right side of (23) as a linear
polynomial in R over Q(o) and then compare coefficients of R in (23) to obtain the
contradiction 0 = 416(5p'/% — p).

Finally, assume that H is a modified difference set, so that (8')—(13") hold. Then
by (3), £,(23) = 0, so by the Lemma, (14) holds with y = 23. Thus

(23) 16( p> — 621p*/? + 46023p + 1399205p'/2) = 52 + 1196 pgr,

where g, r, s are given in the following table:

T q r S
-1 2+ 138/0 138+ 0 -4p — 2760
1 2+ 138/0 + 2R /0 598 + 60 + 2R —-4p — 2760 + 1196R
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If 7 = -1, the right side of (23’) equals 16( p* + 437p3/2 + 46023p + 1423539p'/2),
which yields a contradiction. If 7 = 1, comparison of coefficients of R in (23’) yields
the contradiction 0 = 9568( p + 115p'/2).
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