Twenty-Fourth Power Residue Difference Sets

By Ronald J. Evans*

Abstract

It is proved that if p is a prime $\equiv 1(\bmod 24)$ such that either 2 is a cubic residue or 3 is a quartic residue $(\bmod p)$, then the twenty-fourth powers $(\bmod p)$ do not form a difference set or a modified difference set.

1. Introduction. Let $p=e f+1$ be a prime with fixed primitive root g. Let H denote the set of (nonzero) e th power residues $(\bmod p)$. For integers $i, j(\bmod p)$, define the cyclotomic number (i, j) of order e to be the number of integers n $(\bmod p)$ for which n / g^{i} and $(1+n) / g^{J}$ are both in H. If there exists $\alpha \geqslant 1$ such that every nonzero integer $(\bmod p)$ can be expressed as a difference $(\bmod p)$ of elements of H (resp., $H \cup\{0\}$) in exactly α ways, one calls H a difference set (resp. modified difference set).
E. Lehmer [7] has shown that
H is a difference set if and only if $2 \mid e, 2 \nmid f$, and

$$
\begin{equation*}
(i, 0)=(f-1) / e \text { for all } i=0,1,2, \ldots,(e-2) / 2 \tag{1}
\end{equation*}
$$

and
(1') $\quad H$ is a modified difference set if and only if $2 \mid e, 2 \nmid f$, and

$$
1+(0,0)=(i, 0)=(f+1) / e \text { for all } i=1,2, \ldots,(e-2) / 2
$$

In Section 5 of this paper, we use Lehmer's result, a table of cyclotomic numbers of order twenty-four [6], and a formula for Gauss sums of order twenty-four [3, Theorem 3.32] to prove the following theorem.

Theorem. Suppose that $p=24 f+1$ is a prime such that either 2 is a cubic residue or 3 is a quartic residue $(\bmod p)$. Then the twenty-fourth powers $(\bmod p)$ do not form a difference set or a modified difference set.
2. History. Chowla [4] and Lehmer [7] have constructed e th power residue difference sets and modified difference sets in the cases $e=2,4,8$. The e th power residue difference sets and modified difference sets have been proved nonexistent for all other values of $e \leqslant 24$, except in the following unsolved cases:
(A) $\quad e=20, \quad p \equiv 21(\bmod 40), \quad 5$ nonquartic $(\bmod p)$,
(B) $\quad e=22, \quad p \equiv 23(\bmod 88), \quad 2$ not an eleventh power $(\bmod p)$,

[^0]and
(C) $\quad e=24, \quad p \equiv 25(\bmod 48), \quad 2$ noncubic and 3 nonquartic $(\bmod p)$.

See [7] for $e=6 ;[13]$, [14] for $e=10,12$; [9, Theorems 4 and 5] for $e=14,22 ;$ [12], [5] for $e=16$; [2] for $e=18$; and [10] for $e=20$. See also the paper of Berndt and Evans [3, §5] and the books of Baumert [1], Mann [8], and Storer [11].
3. The Tables of Cyclotomic Numbers of Order Twenty-Four. In the sequel we use the notation of Section 1 with $e=24$. Let $\zeta=\exp (2 \pi i / 24)$ and fix a character χ $(\bmod p)$ of order twenty-four such that $\chi(g)=\zeta$. For characters $\lambda, \Psi(\bmod p)$, define the Jacobi sums

$$
J(\lambda, \Psi)=\sum_{n(\bmod p)} \lambda(n) \Psi(1-n), \quad K(\lambda)=\lambda(4) J(\lambda, \lambda)
$$

It is known $[3, \S 3]$ that there exist integers X, Y, A, B, C, D, U, V such that

$$
\begin{array}{ll}
K\left(\chi^{6}\right)=-X+2 Y i & \left(p=X^{2}+4 Y^{2}, X \equiv 1(\bmod 4)\right) \\
K\left(\chi^{4}\right)=-A+B i \sqrt{3} & \left(p=A^{2}+3 B^{2}, A \equiv 1(\bmod 6)\right) \\
K\left(\chi^{3}\right)=-C+D i \sqrt{2} & \left(p=C^{2}+2 D^{2}, C \equiv 1(\bmod 4)\right)
\end{array}
$$

and

$$
K(\chi)=U+2 V i \sqrt{6} \quad\left(p=U^{2}+24 V^{2}, U \equiv-C(\bmod 3)\right)
$$

Since $J\left(\chi, \chi^{2}\right) \in \mathbf{Z}[\zeta]$, there exist integers $D_{0}, D_{1}, \ldots, D_{7}$ such that

$$
J\left(\chi, \chi^{2}\right)=\sum_{i=0}^{7} D_{i} \zeta^{i}
$$

In the 48 tables [6], each number 576(i,j) has been expressed as a linear combination of $p, 1, X, Y, A, B, C, D, U, V, D_{0}, \ldots, D_{7}$ over \mathbf{Z}.
4. Gauss Sums of Order Twenty-Four. Consider the Gauss sum

$$
G_{e}=\sum_{n=0}^{p-1} \exp \left(2 \pi i n^{e} / p\right)
$$

Define, for real γ,

$$
\begin{equation*}
F_{e}(\gamma)=\left|G_{e}+\gamma\right|^{2}-\left(p(e-1)+\gamma^{2}\right) \tag{2}
\end{equation*}
$$

It is known [3, p. 391] that, for $e=24$,
(3) $\quad H$ is a difference set (resp., modified difference set) if and only if

$$
F_{24}(-1)=0\left(\text { resp., } F_{24}(23)=0\right)
$$

5. Proof of Theorem. By (1) and (1^{\prime}), we may assume that f is odd. Define $V^{\prime} \in\{0,1\}$ by $V^{\prime} \equiv V(\bmod 2)$. Let $Z=\operatorname{ind} 2(\bmod 12)$ and $T=\operatorname{ind} 3(\bmod 8)$, where the indices are taken with respect to the primitive root $g(\bmod p)$. We may assume without loss of generality that $Z \in\{0,2,4,6\}$ and $T \in\{0,2,4\}$ (otherwise replace g by an appropriate power of g such as g^{-1}, g^{5}, or g^{7}).

Assume that H is a difference set or a modified difference set. In particular, then, by (1) and (1^{\prime}), the numbers

$$
\alpha(i)=576(i, 0)
$$

are equal for $1 \leqslant i \leqslant 11$. We will produce a contradiction in each of the nine cases below. The last case is considerably more complicated than the others since it incorporates the results on Gauss sums from Section 4 and [3, Theorem 3.32].

Case 1. $V^{\prime}=Z=0$.
From Tables 25-27 in [6],

$$
\begin{array}{ll}
0=\alpha(1)+\alpha(5)-\alpha(7)-\alpha(11)=192 Y, & \text { if } T=0, \\
0=\alpha(1)+\alpha(7)-\alpha(5)-\alpha(11)=48 B, & \text { if } T=2,
\end{array}
$$

and

$$
0=\alpha(10)-\alpha(2)=48 B, \quad \text { if } T=4 .
$$

Since clearly Y and B are nonzero, this is a contradiction.
Case 2. $V^{\prime}=0, Z=2$.
From Tables 28 and 30,

$$
0=\alpha(11)-\alpha(5)=96 Y, \quad \text { if } T=0,
$$

and

$$
0=\alpha(5)+\alpha(9)+\alpha(1)-\alpha(3)-\alpha(7)-\alpha(11)=288 Y, \quad \text { if } T=4
$$

(Note that $T \neq 2$ in this case, since 3 is quartic by hypothesis.)
Case 3. $V^{\prime}=0, Z=4$.
From Tables 31 and 33,

$$
0=\alpha(1)-\alpha(7)=96 Y, \quad \text { if } T=0
$$

and

$$
0=\alpha(3)+\alpha(7)+\alpha(11)-\alpha(1)-\alpha(5)-\alpha(9)=192 Y, \quad \text { if } T=4
$$

Case 4. $V^{\prime}=0, Z=6$.
From Tables 34-36,

$$
\begin{aligned}
& 0=\alpha(3)-\alpha(9)=96 Y, \quad \text { if } T=0, \\
& 0=\alpha(1)+\alpha(8)-\alpha(4)-\alpha(5)=48 B, \quad \text { if } T=2,
\end{aligned}
$$

and

$$
0=\alpha(2)+\alpha(8)-\alpha(4)-\alpha(10)=96 B, \quad \text { if } T=4
$$

Case 5. $V^{\prime}=1, Z=2$.
From Tables 40 and 42,

$$
0=\alpha(1)-\alpha(7)=96 Y, \quad \text { if } T=0
$$

and

$$
0=\alpha(1)+\alpha(5)+\alpha(9)-\alpha(3)-\alpha(7)-\alpha(11)=96 Y, \quad \text { if } T=4
$$

Case 6. $V^{\prime}=1, Z=6$.
From Tables 46-48,

$$
\begin{aligned}
& 0=\alpha(1)-\alpha(5)=48 B, \quad \text { if } T=0, \\
& 0=\alpha(1)+\alpha(7)-\alpha(5)-\alpha(11)=48 B, \quad \text { if } T=2,
\end{aligned}
$$

and

$$
0=\alpha(4)-\alpha(8)=48 B, \quad \text { if } T=4
$$

Case 7. $V^{\prime}=1, Z=4$.
First suppose that $T=4$. Then from Table 45, 14($\alpha(4)+\alpha(8))+5 \alpha(0)=33 p-$ $879-306 A$. By (1) or (1^{\prime}), the left side above equals $33 p-825$ or $33 p-2121$, respectively. This yields a contradiction in either case.

Finally, suppose that $T=0$. Then from Table 43, $0=2 \alpha(7)+2 \alpha(5)+\alpha(2)+$ $5 \alpha(8)-5 \alpha(4)-\alpha(10)-4 \alpha(3)=288 A+72 B$, so $B=-4 A$ and $p=A^{2}+3 B^{2}=$ $49 A^{2}$, which is absurd.

Case 8. $V^{\prime}=1, Z=0, T \neq 0$.
From Tables 38 and 39,

$$
0=\alpha(2)+\alpha(7)-\alpha(10)-\alpha(11)=144 B, \quad \text { if } T=2
$$

and

$$
0=\alpha(2)+\alpha(8)-\alpha(4)-\alpha(10)=96 B, \quad \text { if } T=4
$$

Case 9. $V^{\prime}=1, Z=0, T=0$.
Assume for the moment that H is a difference set rather than a modified difference set. Then by (1),

$$
\begin{equation*}
p-25=\alpha(0)=\alpha(1)=\alpha(3) \tag{4}
\end{equation*}
$$

From Table 37,

$$
\begin{align*}
& 0=\alpha(1)-\alpha(5)=48 B+48 D_{4} \tag{5}\\
& 0=\alpha(0)-\alpha(6)=16 A+8 C-24 \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
0=\alpha(2)-\alpha(4)=-16 A-8 C-24 U \tag{7}
\end{equation*}
$$

By (12)-(14), we have

$$
\begin{equation*}
B=-D_{4} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
U=-1 \tag{9}
\end{equation*}
$$

From (11), (13), (15), (16), and the formula for α (1) (in Table 37), we obtain

$$
\begin{equation*}
A=13 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
C=-23 \tag{11}
\end{equation*}
$$

From (11), (18), and the formula for $\alpha(3)$,

$$
\begin{equation*}
X=5 \tag{12}
\end{equation*}
$$

From (11), (16), (17), (19), and the formula for $\alpha(0)$,

$$
\begin{equation*}
2 D_{0}+D_{4}=16 \tag{13}
\end{equation*}
$$

Conversely, if equalities (8)-(13) hold, then H is a difference set; this follows easily from (1) and Table 37. We will see shortly that (8)-(13) cannot all hold. It is interesting to note, however, that (9)-(13) all hold for $p=601$.

By arguing as above, we can show that H is a modified difference set if and only if the following equalities $\left(8^{\prime}\right)-\left(13^{\prime}\right)$ all hold:

$$
\begin{align*}
& B=-D_{4} \\
& U=23
\end{align*}
$$

$$
\begin{align*}
A & =-299, \\
C & =529, \\
X & =-115, \\
2 D_{0}+D_{4} & =-368 . \tag{13'}
\end{align*}
$$

Unfortunately we do not see how to obtain contradictions from (8)-(13) or $\left(8^{\prime}\right)-\left(13^{\prime}\right)$ directly from the properties of the Jacobi sums in Section 3. Instead, we obtain contradictions using the results of Section 4 and [3. Theorem 3.32], via the following technical lemma.

Lemma. Suppose that $F_{24}(\gamma)=0$. Then for some $\tau= \pm 1$ and $\nu= \pm 1$,

$$
\begin{equation*}
16(U+\sigma)(\sigma-C)(p+X \sigma)=s^{2}-4 A p q r \tag{14}
\end{equation*}
$$

where

$$
\begin{gathered}
\sigma=\sqrt{p}, \quad R=\nu(2 p-2 X \sigma)^{1 / 2}, \quad q=2+(\gamma-X) / \sigma+R(1+\tau) / \sigma \\
r=2 U-A+\gamma-2 \tau X+R(1+\tau)+2 \sigma(2+\tau)+(\gamma-U) R \tau / \sigma
\end{gathered}
$$

and

$$
s=-4 p+R(\gamma-2 \tau A+C+2 U)-\sigma(\gamma+2 A+X+2 C-4 U) .
$$

Proof. For brevity, write $G=G_{3}$. Define T as in [3, (3.37)]. By [3, Theorems 3.8 and 3.20], there exists a value of $\nu= \pm 1$ (specifying R) such that

$$
\begin{equation*}
G_{12}=G+G^{2} / \sigma-\sigma+R+T . \tag{15}
\end{equation*}
$$

In view of [3, Theorem 3.19], there exists a value of $\tau= \pm 1$ such that

$$
\begin{equation*}
T=\tau G R / \sigma \tag{16}
\end{equation*}
$$

since $3 \nmid X$ by (12), (12'). Since f is odd by hypothesis, the expression $W=$ $\pm\left(R_{1}+R_{5}+R_{7}+R_{11}\right)$ given in [3, p. 379] is purely imaginary. Thus, by (15), (16), and [3, Theorem 3.32], we have

$$
\begin{align*}
G_{24}= & G+G^{2} / \sigma-\sigma+R+\tau G R / \sigma \pm i((2 \sigma-2 C)(2 \sigma-R))^{1 / 2} \tag{17}\\
& \pm i((2 U+2 \sigma)(4 \sigma+2 G+2 R-\tau G R / \sigma))^{1 / 2},
\end{align*}
$$

where the first five terms on the right of (17) are real and the last two terms are purely imaginary. By (2) and (17), we have, for real γ,

$$
F_{24}(\gamma)=\left|G_{24}+\gamma\right|^{2}-\gamma^{2}-23 p,
$$

so

$$
\begin{align*}
F_{24}(\gamma)= & -23 p-\gamma^{2}+\left(G+G^{2} / \sigma-\sigma+R+\tau G R / \sigma+\gamma\right)^{2} \tag{18}\\
& +(2 \sigma-2 C)(2 \sigma-R)+(2 U+2 \sigma)(4 \sigma+2 G+2 R-\tau R G / \sigma) \\
& \pm 4 L,
\end{align*}
$$

where

$$
\begin{equation*}
L^{2}=(U+\sigma)(\sigma-C)(2 \sigma-R)(4 \sigma+2 G+2 R-\tau R G / \sigma) . \tag{19}
\end{equation*}
$$

From [3, Theorem 3.6], since 2 is cubic $(\bmod p)$,

$$
\begin{equation*}
G^{3}=3 p G-2 A p . \tag{20}
\end{equation*}
$$

Expanding the right side of (18) and then using (20) to express G^{3} and G^{4} in terms of smaller powers of G, we see that

$$
\begin{aligned}
F_{24}(\gamma) \mp 4 L= & -23 p-\gamma^{2}+G^{2}+\left(3 G^{2}-2 A G\right)+p+(2 p-2 X \sigma) \\
& +\left(2 G^{2}-2 G^{2} X / \sigma\right)+\gamma^{2}+(6 \sigma G-4 A \sigma)-2 \sigma G \\
& +2 G R+2 \tau G^{2} R / \sigma+2 G \gamma-2 G^{2}+2 R G^{2} / \sigma \\
& +(6 \tau R G-4 \tau A R)+2 \gamma G^{2} / \sigma-2 \sigma R-2 \tau R G \\
& -2 \sigma \gamma+(4 \tau \sigma G-4 \tau X G)+2 \gamma R+2 \gamma \tau R G / \sigma \\
& +4 p-4 C \sigma-2 \sigma R+2 C R+8 U \sigma+4 U G+4 U R \\
& -2 \tau U R G / \sigma+8 p+4 \sigma G+4 \sigma R-2 \tau R G .
\end{aligned}
$$

Since $F_{24}(\gamma)=0$ by the hypothesis of the Lemma, it follows that

$$
\begin{equation*}
\pm 2 L=q G^{2}+r G+s \tag{21}
\end{equation*}
$$

Squaring the right side of (21) and then using (20) to simplify as before, we find that
(22) $4 L^{2}=G^{2}\left(r^{2}+2 q s+3 p q^{2}\right)+G\left(6 p q r+2 r s-2 A p q^{2}\right)+\left(s^{2}-4 A p q r\right)$.

Now, the degrees of G and R over \mathbf{Q} are 3 and 4, respectively, and it is consequently easy to see that G has degree $3 \operatorname{over} \mathbf{Q}(R)$. From (19), we can express the left side of (22) as a linear polynomial in G over $\mathbf{Q}(R)$ with constant term

$$
16(U+\sigma)(\sigma-C)(p+X \sigma) .
$$

Since the constant term on the right side of (22) is $s^{2}-4 A p q r$, the Lemma is proved.

Assume that H is a difference set, so that (8)-(13) hold. Then by $(3), F_{24}(-1)=0$, so by the Lemma, (14) holds with $\gamma=-1$. Thus,

$$
\begin{equation*}
16\left(p^{2}+27 p^{3 / 2}+87 p-115 p^{1 / 2}\right)=s^{2}-52 p q r \tag{23}
\end{equation*}
$$

where q, r, s are given in the following table:

τ	q	r	s
-1	$2-6 / \sigma$	$2 \sigma-6$	$12 \sigma-4 p$
1	$2-6 / \sigma+2 R / \sigma$	$-26+6 \sigma+2 R$	$12 \sigma-4 p-52 R$

If $\tau=-1$, the right side of (23) equals $16\left(p^{2}-19 p^{3 / 2}+87 p-117 p^{1 / 2}\right)$, which yields a contradiction. If $\tau=1$, we can express the right side of (23) as a linear polynomial in R over $\mathbf{Q (\sigma)}$ and then compare coefficients of R in (23) to obtain the contradiction $0=416\left(5 p^{1 / 2}-p\right)$.

Finally, assume that H is a modified difference set, so that $\left(8^{\prime}\right)-\left(13^{\prime}\right)$ hold. Then by (3), $F_{24}(23)=0$, so by the Lemma, (14) holds with $\gamma=23$. Thus

$$
16\left(p^{2}-621 p^{3 / 2}+46023 p+1399205 p^{1 / 2}\right)=s^{2}+1196 p q r
$$

where q, r, s are given in the following table:

τ	q	r	s
-1	$2+138 / \sigma$	$138+\sigma$	$-4 p-276 \sigma$
1	$2+138 / \sigma+2 R / \sigma$	$598+6 \sigma+2 R$	$-4 p-276 \sigma+1196 R$

If $\tau=-1$, the right side of (23^{\prime}) equals $16\left(p^{2}+437 p^{3 / 2}+46023 p+1423539 p^{1 / 2}\right)$, which yields a contradiction. If $\tau=1$, comparison of coefficients of R in (23') yields the contradiction $0=9568\left(p+115 p^{1 / 2}\right)$.
Department of Mathematics University of California at San Diego La Jolla, California 92093

1. L. D. Baumert, Cyclic Difference Sets, Lecture Notes in Math., vol. 182, Springer-Verlag, Berlin, 1971.
2. L. D. Baumert \& H. Fredericksen, "The cyclotomic numbers of order eighteen with applications to difference sets," Math. Comp., v. 21, 1967, pp. 204-219.
3. B. C. Berndt \& R. J. Evans, "Sums of Gauss, Jacobi, and Jacobsthal," J. Number Theory, v. 11, 1979, p.p. 349-398.
4. S. Chowla, "A property of biquadratic residues," Proc. Nat. Acad. Sci. India Sect. A, v. 14, 1944, pp. 45-46.
5. R. J. Evans, "Bioctic Gauss sums and sixteenth power residue difference sets," Acta Arith., v. 38, 1980, pp. 37-46.
6. R. J. Evans, "Table of cyclotomic numbers of order twenty-four," Math. Comp., v. 35, 1980, pp. 1036-1038; UMT file 12[9.10], 98 pp .
7. E. Lehmer, "On residue difference sets," Canad. J. Math., v. 5, 1953, pp. 425-432.
8. H. B. Mann, Addition Theorems, Wiley, New York, 1965.
9. J. B. Muskat, "The cyclotomic numbers of order fourteen," Acta Arith., v. 11, 1966, pp. 263-279.
10. J. B. Muskat \& A. L. Whiteman, "The cyclotomic numbers of order twenty," Acta Arith., v. 17, 1970, pp. 185-216.
11. T. Storer, Cyclotomy and Difference Sets, Markham, Chicago, Ill., 1967.
12. A. L. Whiteman, "The cyclotomic numbers of order sixteen," Trans. Amer. Math. Soc., v. 86, 1957, pp. 401-413.
13. A. L. Whiteman, The Cyclotomic Numbers of Order Ten, Proc. Sympos. Appl. Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1960, pp. 95-111.
14. A. L. Whiteman, "The cyclotomic numbers of order twelve," Acta Arith., v. 6, 1960, pp. 53-76.

[^0]: Received March 10, 1982.
 1980 Mathematics Subject Classification. Primary 05B10, 12C20; Secondary 10G05.
 Key words and phrases. Power residue difference sets, cyclotomic numbers, Gauss and Jacobi sums.
 *Author has NSF grant MCS8101860.

